重要声明:根据国务院学位委员会、教育部(2013)36号文件,自2014年起,原“在职研究生课程班”更名为“课程研修班”!【详情点击】

010-82500874

报名地址:明德楼F座5层506室

首页 > 学习专栏 > 实用信息 >

统计与大数据研究院讲座预告:Variable Selection via Partial Correlation

来源:本站 发布时间:2017-11-02

  收藏 

报名电话: 010-62511097 82501913 报名地址: 人民大学明德新闻楼0506室

中国人民大学课程研修班老师介绍,统计与大数据研究院将于11月3日举办学术讲座:Variable Selection via Partial Correlation。希望广大学生及在职人士积极参与。

题目:Variable Selection via Partial Correlation

时间:2017年11月3日(周五)15:00—16:00

地点:中国人民大学崇德西楼(原科研楼)702会议室

演讲嘉宾:李润泽 教授

Verne M. Willaman Professor of Statistics,

The Pennsylvania State University

Distinguished Professor, The Pennsylvania State University

Associated Editor of Journal of American Statistical Association

教育部长江讲座教授

报告摘要

Abstract: Partial correlation based variable selection method was proposed for normal linear regression models by Buhlmann et al (2010) as a comparable alternative method to regularization methods for variable selection. This paper addresses two important issues related to partial correkrion based variable selection method: (a) whether this method is sensitive to normality assumption, and (b) whether this method is valid when the dimension of predictor increases in an exponential rate of the sample size. To address issue (a), we systematically study this method for elliptical linear regression models. Our finding indicates that the original proposal may lead to inferior performance when the marginal kurtosis of predictor is not close to that of normal distribution. Our simulation results further confirm this finding. To ensure the superior performance of partial correlation based variable selection procedure, we propose a thresholded partial correlation (TPC) approach to select significant variables in linear regression models. We establish the selection consistency of tlie TPC in the presence of ultrahigh dimensional predictors. Since the TPC procedure includes the original proposal as a special case, our theoretical results address the issue (b) directly. As a by-product, the sure screening property of the first step of TPC w;is obtained. The numerical examples also illustrate that the TPC is competitively comparable to the commonly-used regularization methods for variable selecrion.

报名指南

  • 简章大全 中国人民大学在职课程研修班招生简章
  • 联系我们 中国人民大学在职课程研修班招生简章
  • 缴费流程 中国人民大学在职课程研修班招生简章
  • 报名地址 中国人民大学在职课程研修班招生简章

报名表单

  • 姓名:
  • 电话:
  • 专业:
  • 说明:

· 请认真填写您的联系信息以便我们更好的为您服务。

报名地址:中国人民大学明德楼F座5层0506室 招生电话:010-82500874 82501913 62511656 62511097
Copyright?2013 中国人民大学在职课程研修班招生信息网 All rights reserved.